Cédric Villani
1,742,977 views • 16:23

法國人比其他國家的人都擅長的是什麼? 如果你進行民意調查的話, 排在前三位的答案可能是: 愛情,葡萄酒和抱怨。

(笑聲)

也許是這樣。 但是讓我再加一項: 數學。 你知道巴黎的數學家 比世界上其他任何一座城市的都多嗎? 而且也有更多的帶有數學家名字的街道。 如果你看看菲爾茲獎的數據, 它通常被稱作數學領域的諾貝爾獎, 並且總是頒發給40歲以下的數學家, 你會發現法國人均菲爾茲獎得主數量 多過其他任何一個國家。

我們認為數學很迷人的地方是什麼? 畢竟,它看起來枯燥又抽象, 僅僅是數字,計算和運算規則。 數學可能是抽象的, 但是它不是枯燥的 而且它不是關於計算。 它是關於推理 以及證明你的核心任務。 它是關於想像力, 我們最讚賞的一種能力。 它是關於發現真相。 沒有任何事情可以和 經過幾個月苦思終於得出能解決問題的正確推理時 充盈你的那種感受相比 偉大的數學家安德雷·韋伊把這種感覺比作 - 不是開玩笑的 - 性愉悅。 但是請注意這種感覺能持續幾個小時,甚至幾天,

隨之而來的獎賞也可能很豐厚。 我們的現實世界中充滿了未被發現的數學真相。 我們的感官無法感知到它們, 但我們可以用數學的眼光看見它們。 請把你們的眼睛閉上一會兒 然後想一想現在你們身邊正發生著什麼。 空氣中一片混亂, 每秒都有上億不可見的微粒 撞在你的身上。 然而, 它們的數據可以被數學物理準確地預測。 現在請睜開你們的眼睛 來看看這些顆粒移動速率的數據。

這個著名的鍾型高斯曲線, 或者是誤差定律 - 相對於平均數的絕對偏差。 這條線描述了顆粒移動速率 就如同 人口曲線描述個體年齡。 它是迄今為止最重要的曲線之一。 在眾多理論與實驗中, 它作為對我們的數學家們十分寶貴的普遍性的 一個重要例證 一次又一次地出現。

關於這條曲線, 著名的科學家弗朗西斯·高爾頓說過, “如果希臘人知道這條曲線的話,它一定會被他們神化的。 它是無理性的終極法則。” 沒有比加爾頓實驗板更好的方式來展現這位至尊女神。 在這個實驗板裡面是狹窄的通道 小球會通過這些通道隨機落下, 向右或者向左,或者向左,等等。 一切都是完全隨機和任意的。 我們來看看把這些隨機的路徑放在一起觀察將會如何。

(搖晃實驗板)

這有點像一種運動, 因為我們需要解決一些在那裡的交通擁堵。 啊哈。 我們認為隨機性將會在這個台上展現一些極妙。

就是這樣。 我們無理性的至尊女神。 高斯曲線, 被困在了這個透明的實驗板裡,就像《睡魔》中的夢一樣。 我已經給你們展示了這條曲線, 但是在我的學生面,我要解釋為什麼不會是其它的曲線。 這就涉及到這位至尊女神的神祕性, 用一個完美的解釋代替一個美麗的巧合。

所有的科學都如此。 完美的數學解釋不僅僅讓我們愉快。 它們也會改變我們對世界的看法。 比如, 愛因斯坦, 佩蘭, 斯莫魯霍夫斯基, 他們用隨機路徑的數學分析 和高斯曲線 來解釋並且證明我們的世界是由原子組成的。

這不是第一次 數學革新了我們對世界的看法。 2000多年前, 在古希臘的時候, 這就發生了。 在那個時候, 只有一小部分的世界已經被探索, 而且地球似乎是無窮大的。 但是聰明的艾拉托瑟尼, 用數學, 成功地以2%的驚人精確度測量了地球。

還有另一個例子。 在1673年,簡·裡歇爾發現 鐘擺在卡宴比在巴黎擺動得略微慢一些。 僅僅是通過這個發現和巧妙的數學, 牛頓正確地推斷出 地球的兩極有細微的扁平, 像是0.3%那麼多 - 太小了以至於你甚至無法在地球的真實圖像上注意到。

這些故事說明了數學 可以讓我們走出直覺、 測量似乎是無窮大的地球、 看到肉眼不可見的原子 或者是發現難以察覺的形狀差異。 這個演講中你最應當領悟到的 應該是: 數學讓我們超越直覺 並且探索不在我們掌控範圍內的領域。

這是一個和你們都相關的現代案例: 上網。 互聯網, 超過十億的網頁 - 你們想要瀏覽完所有的網頁嗎? 計算機的能力可以提供幫助, 但是它是無用的,如果沒有數學模型 來幫助找到隱藏在數據中的信息。

讓我們解決一個和嬰兒有關的問題。 想像一下你是一名偵探,在偵查一個犯罪案, 然後很多人都有各自版本的事實。 你想要先詢問誰? 合理的答案: 首要證人。 要知道, 假設七號人物 告訴了你一件事, 但是你問他,他是怎麼知道的, 他說消息來在三號人物。 然後可能三號人物 又說消息來自一號人物。 現在一號人物就是首要證人。 所以我肯定想要詢問他 -首要任務 從圖表中 我們也可以看出四號人物也是首要證人。 也許我想要先詢問他, 因為有更多人的提到了他。

好的,那很容易, 但是現在如果你有一大群人需要詢問該怎麼辦呢? 這幅圖表, 我可以把它看作是要在一個複雜的犯罪案中作證詞的所有人, 但是它也可以是彼此聯繫的網頁, 通過彼此參考來獲取信息。 最具權威的是哪些呢? 不是很清楚。

輸入網頁排序, 一個谷歌早期的奠基石。 這個算法使用數學隨機法則 來自動確定最相關的網頁, 和我們在高爾頓實驗板實驗中所使用的隨機性方法一樣。 讓我們把 一束極小的電子彈珠輸送到這個圖表中 然後讓它們在圖表中隨機移動。 每一次它們都會到達某個地方, 它們會通過隨機選擇的、通往下一個地方的通道出去。 一次,一次, 又一次。 根據這些小的,不斷變大的堆積, 我們會記錄每一個地方被 這些電子彈珠到訪的次數。

我們開始吧。 隨機,隨機。 不時地, 讓我們也完全隨機地跳躍來增加趣味性。

看看這個: 答案會從混亂中顯現出來。 最高的堆積對應那些地點 那些出於某種原因比其它地點有更多連接的地點, 比其它地點受到更多指示的地點。 在這裡我們可以清楚地看見 哪些是我們想要先看的網頁。 再一次, 答案從隨機性中顯現。 當然,從那時以後, 谷歌設計出了更複雜的算法, 但是這個已經足夠好了。

但是, 有一個萬里挑一的問題。 隨著數碼時代的到來, 越來越多的問題需要數學分析來解釋, 讓數學家的工作越來越有用, 以至於達到了這樣的程度,幾年前, 它排在幾百個工作之首 在一份關於最佳工作和最差工作的研究中 2009年由華爾街日報出版。

數學家 - 世界上最好的工作。 那是因為各種應用: 通信原理, 信息原理, 博弈論, 壓縮傳感, 機器學習, 圖表分析, 和聲分析。 應該還有隨機過程, 線性編程, 或者是流體仿真吧? 這些領域中的每一個都有龐大的工業應用。 通過它們, 數學可以帶來豐厚的收入。 請允許我承認 當涉及到通過數學賺錢, 美國人是遙遙領先的世界冠軍, 有著機敏的、象徵億萬富翁的、令人驚異的大公司, 所有的這些公司最終都依靠好的算法。

現在,有了這種美麗,實用性和財富, 數學的確看起來更迷人了。 但是不要認為 數學研究員的生活很容易。 它充滿了複雜性, 沮喪, 為了解釋而進行的絕望的鬥爭。

請讓我為你回憶一下 一位數學家一生中最震撼的一天之一。 或許我應該說, 最震撼的夜晚之一。 那個時候, 我在普林斯頓的高級研究所工作 - 很多年來都是阿爾伯特·愛因斯坦的住所 而且可以說是世界上最神聖的數學研究的地方。 那個晚上,我在推理一個很難的證明, 一個那時尚未完成的證明。 它完全是關於理解 等離子體的矛盾的穩定特性, 等離子體是一團電子。 在理想的等離子體世界中, 是沒有碰撞 也沒有摩擦力來提供我們所習慣的穩定性的。 但是, 如果你稍微破壞了等離子體的平衡狀態, 你會發現隨之而來的電場 自然消失了, 或者減弱了, 就像是由一些神秘的摩擦力造成的一樣。

這種矛盾的效應, 被稱作朗道阻尼, 是等離子體物理學中最重要的效應之一, 它是通過數學概念發現的。 但是, 一套對於這個現象完整的數學理解那時並不存在。 和我以前的學生,也是我主要的合作者克萊蒙·穆奧, 那時在巴黎, 我們為了這樣的一個證明一起努力了很多個月。 實際上, 我那時錯誤地宣布了我們可以解決它。 但事實是, 那個證明是無效的。 儘管用了超過100頁的複雜的數學論證, 有了一些發現, 和完成了龐大的計算量, 那個證明還是無效。 在普林斯頓的那晚, 一系列論證中的某個欠缺幾乎讓我發瘋。 我把我所有的精力、經驗和技巧都用在那裡了, 但是還是沒有任何結果。 凌晨一點,兩點,三點, 什麼結果都沒有。 大概凌晨四點的時候,我情緒低落地去睡覺了。 然後幾個小時以後, 我醒來,繼續工作, “啊,孩子們上學的時間到了 -” 這是什麼? 我發誓,在我腦中有這樣一個聲音。 “把第二項移到另一側, 傅立葉變換,然後把L2倒置。”

(笑聲)

見鬼了, 那就是答案的開始!

要知道, 我認為我休息了一下, 但是事實上我的大腦繼續思考著那個問題。 在那些時刻, 你不會想到你的職業或者是你的同事, 那只是那個問題和你之間的一場鬥爭。

儘管如此, 當你因為你的努力而得到升職,也沒什麼不好。 我們完成了龐大的朗道阻尼分析之後, 我很幸運 得到了夢寐以求的菲爾茲獎 由印度主席授予, 2010年8月19日在海得拉巴 - 一個數學家們從不敢奢求的榮譽, 我永遠都會記得的一天。

你會有什麼想法, 在這樣的一個場合? 自豪,對嗎? 還有感激,對那些讓這個成為可能的人。 因為這是一個集體的經歷, 你需要分享它,不僅僅是和你的合作者。 我相信每一個人都可以感受數學研究的刺激, 並且分享在這背後的充滿激情的人和事。 我和我的職員在Henri Poincaré學院已經工作一段時間了, 還有世界各地的數學通訊夥伴和藝術家, 以至於我們可以在那裡建立我們自己的非常特別的數學博物館。

所以幾年後, 當你來到巴黎的時候, 品嚐完美味酥脆的法國長棍麵包和馬卡龍之後, 請來Henri Poincaré學院拜訪我們, 並且和我們分享數學夢想。

謝謝。

(掌聲)