TED Conversations

A wal
  • A wal
  • Cambridge
  • United Kingdom

This conversation is closed.

The Proper Theory Of Relativity

Everything below is based on a new fundamental law that I figured out. If you reverse everything within a system then relativity everything stays exactly the same unless it's viewed from an external frame of reference. The curved space-time caused by gravity in the general theory of relativity also applies to ordinary acceleration. There is absolutely no difference between an object following a straight line in curved space-time and an object following a curved path in flat space-time. Gravity creates inwards curvature´╗┐ which pulls all masses towards each other, rather than conventional acceleration caused by outwards curvature. Gravity is a force of mass rather than energy which is why it's so much weaker than electro-magnetism.

The reason why General Relativity and Quantum Mechanics don't work together is because General Relativity's wrong. Singularities are not places where the laws of relativity break down. They're places that the laws of relativity prevent from ever being reached. A black hole is a four dimensional bubble of space-time, with the event horizon representing the physical boundary imposed by the speed of light that increases size the more space-time´╗┐ there is between the it and the observer. The concept of curved space-time hasn't been applied correctly and the result is a description of gravity that treats falling objects as equivalent to objects at rest in the sense that a falling object isn't under the influence of a force. This leads to objects being able to accelerate beyond a relative velocity of the speed of light when the pass the event horizon of a black hole, which is impossible.

Set the posts to newest first and start from the top to read the rest.


Showing single comment thread. View the full conversation.

  • Oct 19 2012: Hi A Wal,
    There's a question that's been puzzling me:
    Relative to a stationary observer,how does one calculate/determine the rate at which an object observed 'decreases' in size when viewed by that observer as it moves away at a contact speed?
    This is because objects are viewed as 'smaller' as they move away from an observer.

Showing single comment thread. View the full conversation.